2,540 research outputs found

    Stroke-related Effects on Maximal Dynamic Hip Flexor Fatigability and Functional Implications

    Get PDF
    Introduction: Stroke-related changes in maximal dynamic hip flexor muscle fatigability may be more relevant functionally than isometric hip flexor fatigability. Methods: Ten chronic stroke survivors performed 5 sets of 30 hip flexion maximal dynamic voluntary contractions (MDVC). A maximal isometric voluntary contraction (MIVC) was performed before and after completion of the dynamic contractions. Both the paretic and nonparetic legs were tested. Results: Reduction in hip flexion MDVC torque in the paretic leg (44.7%) was larger than the nonparetic leg (31.7%). The paretic leg had a larger reduction in rectus femoris EMG (28.9%) between the first and last set of MDVCs than the nonparetic leg (7.4%). Reduction in paretic leg MDVC torque was correlated with self-selected walking speed (r2 = 0.43), while reduction in MIVC torque was not (r2 = 0.11). Conclusions: Reductions in maximal dynamic torque of paretic hip flexors may be a better predictor of walking function than reductions in maximal isometric contractions

    The Stroke-related Effects of Hip Flexion Fatigue on Over Ground Walking

    Get PDF
    Individuals post stroke often rely more on hip flexors for limb advancement during walking due to distal weakness but the effects of muscle fatigue in this group is not known. The purpose of this study was to quantify how stroke affects the influence of hip flexor fatigue on over ground walking kinematics and performance and muscle activation. Ten individuals with chronic stroke and 10 without stroke (controls) participated in the study. Maximal walking speed, walking distance, muscle electromyograms (EMG), and lower extremity joint kinematics were compared before and after dynamic, submaximal fatiguing contractions of the hip flexors (30% maximal load) performed until failure of the task. Task duration and decline in hip flexion maximal voluntary contraction (MVC) and power were used to assess fatigue. The stroke and control groups had similar task durations and percent reductions in MVC force following fatiguing contractions. Compared with controls, individuals with stroke had larger percent reductions in maximal walking speed, greater decrements in hip range of motion and peak velocity during swing, greater decrements in ankle velocity and lack of modulation of hip flexor EMG following fatiguing dynamic hip flexion contractions. For a given level of fatigue, the impact on walking function was more profound in individuals with stroke than neurologically intact individuals, and a decreased ability to up regulate hip flexor muscle activity may contribute. These data highlight the importance of monitoring the effect of hip flexor muscle activity during exercise or performance of activities of daily living on walking function post stroke

    Method of determining the essential geometric characteristics of the metal foam structure

    Get PDF
    The paper deals with the description of method, proposed by authors, that determining the essential geometric characteristics of the metal foam structure with using of the analytical imaging software. Method use economically available technical apparatus and software with emphasis on maximum consideration of the measurement uncertainty by Kline-McClintock method. The image analysis used three kinds of metal foams with a pore density of 10 to 40 pores per inch. The most important parameter - the size of a metal foam cell ranged from 1,165 mm (for 40 PPI) through a 2,262 mm (for 20 PPI) to 5,660 mm (for 10 PPI)

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    Get PDF
    Results of a search for H → τ τ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV respectively. All combinations of leptonic (τ → `νν¯ with ` = e, µ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of µ = 1.43 +0.43 −0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model
    corecore